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OF THE FORCE AND MOMENT OF FORCES ACTING ON A DROP IN AN 
ARBITRARY NON-STEADY FLOW OF A VISCOUS FLUID* 

N.V. PARSHIKOVA 

The Oseen point force method /l-3/ which differs from the methods used 

earlier in similar problems, is used to obtain formulas for the force 

and moment of forces acting on a spherical drop in an inhomogeneous non- 
steady flow of viscous incompressible fluid. In special cases the results 

can be reduced to well-known results. 

Earlier, the non-steady motion of a rigid particle in an inhomo- 
geneous non-steady flow was considered in /4, 5/, its rotation in /6. 7/. 

the conditions of slippage at the surface in /5, 7/, and the effect of 

the specified external forces in /8, 9/. The corresponding stationax- 

problem was studied in /lO, ll/ and the non-steady motion of a drop in 

uniform non-steady flow in /12-14/. 

1. Formulation of the problem. A liquid sohere of viscosity p',density p and 

constant radius a, moves with velocity u(t) through an incompressible medium of viscositv 

IL and d$nsity p. The problem is studied in the Stokes approximation, i.e. we consider the 

following linear, non-steady equationsofmotion of the fluid outside and inside the drop: 

*Prikl.?fatem./dekllan.,50,5,772-779,1986 
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pav/at= - VP -t PAv + f,, div v = 0 (1.1) 

(ad/at = - Vp’ + P'Av' + f,', div v' = 0 WI 

When there is no particles, the fluid has a velocity v,(P, t) and a pressure p- (r, t), 
which also satisfy the system of Eqs.(l.l). 

The conditions satisfied at the drop surface are the conditions that no fluid passes 

across the surface of contact and that the tangential components of the velocity are equal to 
the tangential components of the viscous stress tensor 

L', =ud=u,, vt = v,', Pnr = p:,r (1.3) 

The following conditions hold away from the particle and at its centre: 

1'"co, v-vv,+o, p-pm--'o; i-=0. lv'l#za, p'+x 

Let us introduce the dimensionless variables by dividing the radius vector, the time, 

velocity, pressure and the qiven external force by the quantities a, a%, via, pvia?, nvla3 (p = p.v) 
respectively. 

In the outer problem we can eliminate the given force $(r, t) by subtracting the equations 

for v,,p, from (1.1). We will assume that for the inner problem f,' = r'cp (e.g. the force of 

gravity), and this can then be included in the pressure. Since the deviation of the drop 

shape from spherical (i.e. the conditions for p,,,) were not considered, it follows that the 

boundary conditions in this case remain unchanged. 

AS a result, we obtain the following equations and boundary conditions in terms of the 

dimensionless variables w = v -v,. 9 = P -Pw, V’,p(: 
adat = - cq + A\\,, div w = 0 (1.4) 

uB-~ av’lat = - Vp’ + ~Av', div V’ = 0 (1.5) 

r= 1, II’, + L’,, = vn‘ = u,, Wt + v,1’= VT’, (1.6) 
qnr + PccnT=PIlr' 

r*co,w+O,q-~O (l.7) 

r = 0, 1 v' I# 00, p' # 00 (1.8) 

The system of Eqs.tl.4) and (1.5), which contains two dimensionless parameters s and BZ 
equal to the ratios of the dynamic and kinematic coefficients inside and outside the drop 

respectively, together with conditions (1.6)-(1.8), enables us to determine the velocity and 
pressure field outside and inside the drop. 

2. Constructing the solutions. We shall use the Laplace transform with parameter 

s, with respect to the argument of time t. Here the equations of motion take the form 

SW = -VQ+ AW, divW =0 (2.1) 

uB_%V = -VP’+ aAV', div V' = 0 (2.2) 

r= 1, w, + vc‘m = V,‘= u,, w, f v,, = v,‘, (2.3) 

Qm + P._-om = Pi,, 
r * 00, W+O,Q+O (2.4) 

r = 0, 1 V' I# 00, P’ # 00 (2.5) 

Following the Oseen point force method /l, 2/, we shall construct the solutions of the 

above system of equations with help of the fundamental tensor LL,,~ and vector pk 

The function d, is a 

In this case, when k 

The solutions Fkluk 

by a point force situated 

solution of the equation 

Ma, - sA@ = S(r), cf, =(I - e-"':) (4nsr)' 

is fixed the quantities Uki and ph. satisfy the equations 

.n~~=--Vp~+Au~, divuk=O 

and Fklpk (F' is a constant vector) correspond to the flow generated 

at the origin of coordinates. Clearly, any order derivatives with 
respect to the coordinations of ui and ph. will be solutions of system (2.1). In particular, 
we can say this of the quantities Vkit qk 

Vki=hUk;= 8,iM~-~%'A~(D/ax,ax~, qk==APk=O (r> 1) 

In order to satisfy the boundary conditions, we shall construct the outer solution of 
problem (2.1)-(2.5) with help of the derivatives with respect to the coordinates of the 

quantities uki.vki andp,+.CollectingthetermsaccompanyingA~ and separating in the corresponding 
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tensors the symmetric and antisymmetric parts, we obtain expressions for the velocity and 

pressure field, which in vector notation will be 

W=AM@-V(A.V)AQ+[Vx L]AcD-V(F.V),&-), (2.6) 

Q=W(&) 
The components of the vectors F and L are linear differential operators of the form 

a(“-‘) F’=~F%..i azjalk..eaE 
, Li = L!?) 

1 
t,h.. 1 

*=1 n=1 

(#,:-I) 

We can express the vector A in the same manner. We will show below that the boundary 

conditions at the sphere hold, if the tensors F(“),W) and A@) are symmetrical over any 

pair of indices and the contractions over any two indices are equal to zero. The solution 

(2.6) represents another form of the general Lamb solution /15/. This can be shown by 

assuming that quqntities of the form f, = L%$~,,~~ xix)... xk are spherical volume harmonics of 

degree n, since they are homogeneous with respect to rn and Afn = 0. 
Indeed, we can write the solution (2.6) in the form 

The function Qn(i-)=(r-ld!dr)nAUJ satisfies the relations 

For example, we have 

1 
Q'o(r)=Aa,=-=e- 

’ -I- fir -I/& 
Jsr, 111(r) =re , 

$,(r)=_3+:w~~+Srz e-fi 
4 nr5 

The functions q,,(r) are proportional to Bessel functions of fractional order /16/. 

Remembering also that the tensors F('),h('),. I@) are symmetrical over any pair of indices and 

their contractions over two indices are equal to zero, i.e. that quantities of the form fn = 

A!“! ,,J...~zgj...z~ are spherical volume harmonics of degree n, we can establish a correspondence 

between the solution (2.6) and the general Lamb solution /15/. 

The solution of system (2.2) inside the drop, constructed in the same manner, has the 

form 

V’ = - G (S . V) A())' b SAAO’ + [V x T] A@’ + 

h-‘V i i f?i;J, lX,Xj . . .X[j , P’= -CT 2 Hi;l..lZ,Xj. . . I[ 
?a=1 71=1 

si= 2 sgl,,h a(“-‘) , 
azj...az, 

T' = 2 @;w,h ac"-', 

n--l 11=1 
azj . axk 

Here the tensors S("),T(") and R(") are symmetrical over any pair of indices, and their 

contractions over two indices are equal to zero. The function CD' represents the solution of 

the equation 

bounded at the point r=O. 
We can establish, for the inner solution, a correspondence with the general Lamb solution, 

just as we did for the outer solution. Below, we shall make use of the stress vector, which 

can be found using the formula 

Q,,=-Qn -I-(+ - +)W-+V(r.W)= (2.8) 
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m 

.z (2 (k + 2) r-IV (bg- k 1 (P) - Fij,..l?ti?Zj. . a nr) - 

k-1 

s (bkr-"-rF$)..ln.n~ , , . . . nl) n - (kr)-’ [(k - 1) $)k (r) + 

ra$b+I (r)] rot [P (L~:~.,~ZiZj. . . Xl)] + 

(rk)-l [(2ka - 2 + 9) & (r) - 2r2*~+1] V (AI~?..ixiZj. . .+) t 

[Z (k + 2)$k+,(r)- s$k(r)] (AIj!..L5L"j.. .51) n), 

bh = (- 1)” (2k - 1)!!/4ns 

We can write the boundary conditions (2.3) in the form /lo/ 

w, + v,, = V,’ = u,, aW,jar + aV,,Jar = av,‘jar 
(r.rot W) + (r-rot V,) = (r-rot V'),(r.rot Q,,) + (r.rotP,,,) = (r-rot P,,‘) 

(rsrot [r x QJ) + (r-rot [r x Pmn])=(r*rot [r~ I’,,‘]) 

(2.9) 

We will represent the prescribed velocity field Vm(r, s) in the form of a Taylor series 

d 

v-‘-uL=C& 
[ 

@-I) (Vb, _ Vi) m 

n=1 

~~~~~~~~~~~~ oxj.~*xpxq= 1 r, d!l’ 
tj...lrq ). . . xpxq 5 

n=l 

The zero index means that the corresponding quantity is taken at the centre of the drop 

when the latter is not there. 

We can expand the field V, at the drop surface r = 1 in terms of the independent 
spherical harmonics as follows: 

(2.10) 

m 

I,qniftj. . . npnq= Bh. 
h=l !, =, 

- (r-rot [r X PRn]) = j2 (k - 1) [2 (k + l)dl~!..lUifLj.. . nl - 

(k - 2) d$$...jlninj . . . n,] = X Ek 
k=1 

(r *rot Pm.,) = $ (k - 2) (k - 1) Ei~jd~~~,.,q ninp. . m .nq = 2 Dk 
R=1 

The quantities Ak,Bk,Ek, Ck,Dk represent spherical surface harmonics of degree k. When 

k=l, the quantities can be easily calculated and used later in determining the force and the 

moment of forces acting on the drop. For example, we have for A,,B, 

Al = (V,’ 
[A”v_‘lo n, 

-U')ni-t-3~I (2k+3)(2k+l)! ’ 

a 
[AkV_‘], n. 

B1 = 3 x (2k + 3) (2k + l)(ik- I)! 
h--=1 

The boundary conditions (2.9) are reduced here to 

(k + 1) bkF$!,.rninj m . e TL~ + (k + 1) $,A!i.‘..lni”j e . IZ~ + Al, = 0 

kRB’fJ,lninj . . . n, -+- ha (k -t I: ~~‘S!;~,,~ninj. . . nl = 0 

(k + 1) (- (k + 2) bkFi;.! I n,n,. . . nl + 
[(k - 1) & + IJI~+~] Al:.‘..ln,nj. . . n,) + Bx = k (k - 1) hsaR.’ ijh‘!.lTZ,lZj 3 . . 4 -I- 

(k + I) [*;+I + (k - 1) qt’] S!:?..lncnj. . . nl 

2bkk (k + 2) F@.).,lninj. . . nl + (k + 1)-l E,, + 

([2(k2-1) _LS]Qk -2~rijd,,A;;.)Jn,n,. . . nl = G (2k (k - 1) PR!j)..~n,n,. . . nl + 

[(2k? - 2 f ha) $h’ - 21p;.+1] s$‘. &r&j. . . 72~) 

(2.11) 
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where 

The functions Qk'(r) satisfy relations analOgOUS to the equations for vl,g (r). 

The solutions of the system of Eqs.(2.11) are as follows: 

(2.12) 

As we have already said, the quantities Ak,Bk,Ck,Dk,Ek are known, independent spherical 
surface harmonics of degree k, expressed in terms of the given field V, by the formulas 

(2.10). They are easily computed for k = 1, and appear in the expressions for the force and 

moment of forces which are found from the surface integrals containing the stress tensor (2.8) 
and depending, by virtue of the orthogonal nature of the harmonics, only on the vectors F' 

and 1,' shown in the solutions (2.12). 

3. Formulas for the force and moment of forces. The quantities shown are related 
to the vectors F' and L' which correspond toapoint force and point moment and are determined 

from Eqs.(2.11) by the relations 

G (SJ = F' (s) + "/3nsU (s) - 1 F, (r, s)dr 

1\1(~)=2/~(3 + 3 1/s + s)&Lr + s 1 [r x V,]dr - s ]P x F,,] dr 

Here the integration is carried out over the volume of the unit sphere. Using the inverse 
Laplace transform, we finally obtain the following expressions for the force g (4 and moment 

of forces In (4 acting on the drop in non-uniform non-steady flow: 

+2s3% ([va]o-u) ~)- 6 1 dTZl(t - ~)_;14,(]vn]u - u) t 

II 

~~{2n3s+~~11-k),~Xv,]o I-&~[klo+ 
(2k + I)! 

A =, 

6 5 dr [(I - k)ZI(t--) + kZ,(t--)I & [h”vce]d -@h+ 

0 

m(t)=+fdTZ.+-r)&[ rot v,], + -& .7 + Irot VW10 + 

&k+,,:kT I,!{ 
- 2nk [rot A"v,]o + z$-&- IrOt A’vwlof 

i dT [I, @ _ T) I- 2kZ4 (t - T)] & [rot A”v=ld - 5 [r X f,]dr 

0; 

The Laplace transforms of the functions Zi (t) are, respectively, ns-'Ki (s) (i = 1, 2, 3, 4) 

and 
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K,(s)= E(s)[aa(h) + P(k)]- (30 i- 2) (3a + 3)“, 
Kz(s)= cram - ~(0 t I)-' 

Ks(s)=(3+3I/s+s)A(s), K4(s)=(f+ 1/s'8(s) 

E(s)=(l + 1/i) [m(h) + (3 + 1/a B (VI-‘. 
9 (s) = uli.y (h) [oha (I + 1/S) P @) + (3 + 3 I/s + s) y @)I-1 
y(h)=hchk-shh, p(h)=shh-33y(h)/h*, 

a(h) = y(h) - 2P (4 

When the particle is rigid, we obtain 

11 (t) = I2 (t) = -$- , Is(t) = n 
( 
3 - e’erfc I/t + L..- 

) I/z ’ 
I4 (t) = x 

and in the case of a bubble we have, as U-PO, 

I, (t) = 4/, ne9’ erfc (31/z), I2 (t) = I, (t) = I4 (t) = 0 

These two special cases agree with the results obtained in /4-g/. When o=B=l, we 
can write the following analytic expressions for I,(t), I&(t): 

Is(t) = $ [ 12ta - 6t + 1 - (12P + 6t + 1) exp( - +)I 

II 
2t+ 

Z4@)=n 7-- ~t~_~erp(-f)-ferfc(~)] 
1/n ifs 

For other values of the parameters 0 and B the quantities Ii(t) are determined numerially. 
The results of the computations are shown in Fiqs.l-6. Curves l-6 correspond to values of 
the parameters B2 equal to 0.001; 0.01; 0.1; 1; 10; 100. 

For short times, the following asymptotic formulas hold: 

"B[35Ba(5+B)- (G-:B,.]<~: 

(3+B13 + . . . 

tXP;(B*+B~st_2-~a)I/r; 

(5 i-BJ’ 
-t . . . 

Fig.1 

Fig.3 

IO' Ia-’ I t 

Fig.2 

Pig.4 
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As 

Fig. 5 

M , the functions I,(t) tend to 

Fig.6 

The ends of the curves inFigs.l-6 are described by the asymptotic formulas with an error 
not exceeding 10--15%. 
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The author thanks A.M. Golovin for formulating the problem and discussing the results. 
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